Maximal work production following two levels of artificially induced metabolic alkalosis

J Sports Sci. 1986 Spring;4(1):35-8. doi: 10.1080/02640418608732096.

Abstract

In order to determine the influence of two artificially induced alkalotic states on the ability to perform maximal exercise, six male subjects (mean age, 22.0 years; mean height, 176.8 cm; mean weight, 69.1 kg; mean VO2 max, 3.83 l min-1) were studied during three experimental trials. The subjects performed six 60-s cycling bouts, at a work rate corresponding to 125% VO2 max, with 60 s recovery between work bouts; these regimens were performed 1 h after the ingestion of a solution containing either; I, placebo; II, NaHCO3 in a dosage of 0.15 g per kg body weight; or III, NaHCO3 0.30 g per kg body weight. The sixth work bout was continued until the pedal velocity dropped below 50 rev min-1. Total work done for the entire work period was calculated. Blood samples were taken from a forearm vein prior to the exercise bouts for analysis of pH and HCO3. The results showed a significant pre-exercise difference in pH and HCO3 for all conditions (P less than 0.01). In conditions where artificial alkalosis had been achieved prior to exercise there was significant increase in the work produced: I, 121.6 kJ; II, 133.1 kJ; III, 133.5 kJ (P less than 0.05). The time to fatigue in the six bout was also significantly increased; I, 74.7 s; II, 111.0 s; III, 106.0 p (P less than 0.05). There were no significant differences between conditions II and III. Thus augmentation of the bicarbonate reserves has a significant positive effect on the energy metabolism in interval-type exercise, leading to an increase in the work done and in the time to fatigue.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Clinical Trial
  • Comparative Study
  • Controlled Clinical Trial

MeSH terms

  • Adult
  • Alkalosis / metabolism
  • Alkalosis / physiopathology*
  • Bicarbonates / blood
  • Energy Metabolism
  • Fatigue / etiology
  • Humans
  • Hydrogen-Ion Concentration
  • Male
  • Physical Exertion*
  • Time Factors

Substances

  • Bicarbonates