We explored the relevance of genomic microarrays (GM) in the refinement of prognosis in newly diagnosed low-risk chronic lymphocytic leukaemia (CLL) patients as defined by isolated del(13q) or no lesions by a standard 4 probe fluorescence in situ hybridization (FISH) analysis. Compared to FISH, additional lesions were detected by GM in 27 of the 119 patients (22.7%). The concordance rate between FISH and GM was 87.4%. Discordant results between cytogenetic banding analysis (CBA) and GM were observed in 45/119 cases (37.8%) and were mainly due to the intrinsic characteristics of each technique. The presence of additional lesions by GM was associated with age > 65 years (p = 0.047), advanced Binet stage (p = 0.001), CLL-IPI score (p < 0.001), a complex karyotype (p = 0.004) and a worse time-to-first treatment in multivariate analysis (p = 0.009). Additional lesions by GM were also significantly associated with a worse time-to-first treatment in the subset of patients with wild-type TP53 and mutated IGHV (p = 0.025). In CLL patients with low-risk features, the presence of additional lesions identified by GM helps to identify a subset of patients with a worse outcome that could be proposed for a risk-adapted follow-up and for early treatment including targeted agents within clinical trials.
Keywords: arrays; chronic lymphocytic leukaemia; genomic complexity; prognosis.
© 2023 The Authors. British Journal of Haematology published by British Society for Haematology and John Wiley & Sons Ltd.