Toilet paper has been reported as one of the major insoluble pollutant components in the influent of wastewater treatment plants. Toilet paper fibers contribute to a large production of sewage sludge, resulting in a high treatment cost and high energy consumption. To find energy-efficient, cost-effective, and environment-friendly technologies for fiber removal and resource recovery from wastewater, a life-cycle assessment (LCA) was performed to analyze the wastewater treatment processes, including a sieving process for removing and recovering suspended solids before the biodegradation units. Based on the LCA results, it was estimated that the sieve screening process saved 8.57% of energy consumption. The construction phase of sieving consumed 1.31% energy cost compared with the operation phase. Environmental impact analysis showed that sieving reduced the impacts of climate change, human toxicity, fossil depletion, and particulate matter formation, which reduced the total normalized environmental impacts by 9.46%. The life-cycle analysis of the removal of toilet paper fibers from wastewater revealed the need to use more efficient methods to enhance the recovery of cellulose fibers.
Keywords: Energy analysis; Environmental impacts; Life-cycle assessment; Toilet paper fibers; Wastewater treatment.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.