Background: The environmental prevalence of widely prescribed human pharmaceuticals that target key evolutionary conserved biomolecules present across phyla is concerning. Antidepressants, one of the most widely consumed pharmaceuticals globally, have been developed to target biomolecules modulating monoaminergic neurotransmission, thus interfering with the endogenous regulation of multiple key neurophysiological processes. Furthermore, rising prescription and consumption rates of antidepressants caused by the burgeoning incidence of depression is consistent with increasing reports of antidepressant detection in aquatic environments worldwide. Consequently, there are growing concerns that long-term exposure to environmental levels of antidepressants may cause adverse drug target-specific effects on non-target aquatic organisms. While these concerns have resulted in a considerable body of research addressing a range of toxicological endpoints, drug target-specific effects of environmental levels of different classes of antidepressants in non-target aquatic organisms remain to be understood. Interestingly, evidence suggests that molluscs may be more vulnerable to the effects of antidepressants than any other animal phylum, making them invaluable in understanding the effects of antidepressants on wildlife. Here, a protocol for the systematic review of literature to understand drug target-specific effects of environmental levels of different classes of antidepressants on aquatic molluscs is described. The study will provide critical insight needed to understand and characterize effects of antidepressants relevant to regulatory risk assessment decision-making, and/or direct future research efforts.
Methods: The systematic review will be conducted in line with the guidelines by the Collaboration for Environmental Evidence (CEE). A literature search on Scopus, Web of Science, PubMed, as well as grey literature databases, will be carried out. Using predefined criteria, study selection, critical appraisal and data extraction will be done by multiple reviewers with a web-based evidence synthesis platform. A narrative synthesis of outcomes of selected studies will be presented. The protocol has been registered in the Open Science Framework (OSF) registry with the registration DOI: 10.17605/OSF.IO/P4H8W.
Copyright: © 2023 Imiuwa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.