The Role of Two Heart Biomarkers in IgA Nephropathy

Int J Mol Sci. 2023 Jun 19;24(12):10336. doi: 10.3390/ijms241210336.

Abstract

Cardiovascular mortality is a leading cause of death in chronic kidney disease (CKD), as is IgA nephropathy (IgAN). The purpose of this study is to find different biomarkers to estimate the outcome of the disease, which is significantly influenced by the changes in vessels (characterized by arterial stiffness) and the heart. In our cross-sectional study, 90 patients with IgAN were examined. The N-terminal prohormone of brain natriuretic peptide (NT-proBNP) was measured as a heart failure biomarker by an automated immonoassay method, while the carboxy-terminal telopeptide of collagen type I (CITP) as a fibrosis marker was determined using ELISA kits. Arterial stiffness was determined by measuring carotid-femoral pulse wave velocity (cfPWV). Renal function and routine echocardiography examinations were performed as well. Based on eGFR, patients were separated into two categories, CKD 1-2 and CKD 3-5. There were significantly higher NT-proBNP (p = 0.035), cfPWV (p = 0.004), and central aortic systolic pressure (p = 0.037), but not CITP, in the CKD 3-5 group. Both biomarker positivities were significantly higher in the CKD 3-5 group (p = 0.035) compared to the CKD 1-2 group. The central aortic systolic pressure was significantly higher in the diastolic dysfunction group (p = 0.034), while the systolic blood pressure was not. eGFR and hemoglobin levels showed a strong negative correlation, while left ventricular mass index (LVMI), aortic pulse pressure, central aortic systolic pressure, and cfPWV showed a positive correlation with NT-proBNP. cfPWV, aortic pulse pressure, and LVMI showed a strong positive correlation with CITP. Only eGFR was an independent predictor of NT-proBNP by linear regression analysis. NT-proBNP and CITP biomarkers may help to identify IgAN patients at high risk for subclinical heart failure and further atherosclerotic disease.

Keywords: IgA nephropathy; arterial stiffness; chronic kidney disease; heart failure; renal function.

MeSH terms

  • Biomarkers
  • Cross-Sectional Studies
  • Glomerulonephritis, IGA*
  • Heart Failure*
  • Humans
  • Natriuretic Peptide, Brain
  • Peptide Fragments
  • Pulse Wave Analysis
  • Renal Insufficiency, Chronic*
  • Vascular Stiffness*

Substances

  • Biomarkers
  • Natriuretic Peptide, Brain
  • Peptide Fragments