Mangroves provide a unique ecological environment for complex microbial communities, which play important roles in biogeochemical cycles, such as those for carbon, sulfur, and nitrogen. Microbial diversity analyses of these ecosystems help us understand the changes caused by external influences. Amazonian mangroves occupy an area of 9000 km2, corresponding to 70% of the mangroves in Brazil, on which studies of microbial biodiversity are extremely scarce. The present study aimed to determine changes in microbial community structure along the PA-458 highway, which fragmented a mangrove zone. Mangrove samples were collected from three zones, (i) degraded, (ii) in the process of recovery, and (iii) preserved. Total DNA was extracted and submitted for 16S rDNA amplification and sequencing on an MiSeq platform. Subsequently, reads were processed for quality control and biodiversity analyses. The most abundant phyla were Proteobacteria, Firmicutes, and Bacteroidetes in all three mangrove locations, but in significantly different proportions. We observed a considerable reduction in diversity in the degraded zone. Important genera involved in sulfur, carbon, and nitrogen metabolism were absent or dramatically reduced in this zone. Our results show that human impact in the mangrove areas, caused by the construction of the PA-458 highway, has resulted in a loss of biodiversity.
Keywords: 16S rRNA; anthropogenic impact; deforestation; microbiome.