Uncovering the Protective Neurologic Mechanisms of Hypofractionated FLASH Radiotherapy

Cancer Res Commun. 2023 Apr 27;3(4):725-737. doi: 10.1158/2767-9764.CRC-23-0117. eCollection 2023 Apr.

Abstract

Implementation of ultra-high dose-rate FLASH radiotherapy (FLASH-RT) is rapidly gaining traction as a unique cancer treatment modality able to dramatically minimize normal tissue toxicity while maintaining antitumor efficacy compared with standard-of-care radiotherapy at conventional dose rate (CONV-RT). The resultant improvements in the therapeutic index have sparked intense investigations in pursuit of the underlying mechanisms. As a preamble to clinical translation, we exposed non-tumor-bearing male and female mice to hypofractionated (3 × 10 Gy) whole brain FLASH- and CONV-RT to evaluate differential neurologic responses using a comprehensive panel of functional and molecular outcomes over a 6-month follow-up. In each instance, extensive and rigorous behavioral testing showed FLASH-RT to preserve cognitive indices of learning and memory that corresponded to a similar protection of synaptic plasticity as measured by long-term potentiation (LTP). These beneficial functional outcomes were not found after CONV-RT and were linked to a preservation of synaptic integrity at the molecular (synaptophysin) level and to reductions in neuroinflammation (CD68+ microglia) throughout specific brain regions known to be engaged by our selected cognitive tasks (hippocampus, medial prefrontal cortex). Ultrastructural changes in presynaptic/postsynaptic bouton (Bassoon/Homer-1 puncta) within these same regions of the brain were not found to differ in response to dose rate. With this clinically relevant dosing regimen, we provide a mechanistic blueprint from synapse to cognition detailing how FLASH-RT reduces normal tissue complications in the irradiated brain.

Significance: Functional preservation of cognition and LTP after hypofractionated FLASH-RT are linked to a protection of synaptic integrity and a reduction in neuroinflammation over protracted after irradiation times.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Female
  • Long-Term Potentiation*
  • Male
  • Mice
  • Neuroinflammatory Diseases*
  • Neuronal Plasticity
  • Radiation Dose Hypofractionation