Recently, 3D printing has been widely used to fabricate medical imaging phantoms. So far, various rigid 3D printable materials have been investigated for their radiological properties and efficiency in imaging phantom fabrication. However, flexible, soft tissue materials are also needed for imaging phantoms for simulating several clinical scenarios where anatomical deformations is important. Recently, various additive manufacturing technologies have been used to produce anatomical models based on extrusion techniques that allow the fabrication of soft tissue materials. To date, there is no systematic study in the literature investigating the radiological properties of silicone rubber materials/fluids for imaging phantoms fabricated directly by extrusion using 3D printing techniques. The aim of this study was to investigate the radiological properties of 3D printed phantoms made of silicone in CT imaging. To achieve this goal, the radiodensity as described as Hounsfield Units (HUs) of several samples composed of three different silicone printing materials were evaluated by changing the infill density to adjust their radiological properties. A comparison of HU values with a Gammex Tissue Characterization Phantom was performed. In addition, a reproducibility analysis was performed by creating several replicas for specific infill densities. A scaled down anatomical model derived from an abdominal CT was also fabricated and the resulting HU values were evaluated. For the three different silicone materials, a spectrum ranging from -639 to +780 HU was obtained on CT at a scan setting of 120 kVp. In addition, using different infill densities, the printed materials were able to achieve a similar radiodensity range as obtained in different tissue-equivalent inserts in the Gammex phantom (238 HU to -673 HU). The reproducibility results showed good agreement between the HU values of the replicas compared to the original samples, confirming the reproducibility of the printed materials. A good agreement was observed between the HU target values in abdominal CT and the HU values of the 3D-printed anatomical phantom in all tissues.
Keywords: 3D printing; CT imaging; Radiological properties; Silicone materials.
Copyright © 2023 The Author(s). Published by Elsevier GmbH.. All rights reserved.