In the nodules of IRLC legumes, including Medicago truncatula, nitrogen-fixing rhizobia undergo terminal differentiation resulting in elongated and endoreduplicated bacteroids specialized for nitrogen fixation. This irreversible transition of rhizobia is mediated by host produced nodule-specific cysteine-rich (NCR) peptides, of which c. 700 are encoded in the M. truncatula genome but only few of them have been proved to be essential for nitrogen fixation. We carried out the characterization of the nodulation phenotype of three ineffective nitrogen-fixing M. truncatula mutants using confocal and electron microscopy, monitored the expression of defence and senescence-related marker genes, and analysed the bacteroid differentiation with flow cytometry. Genetic mapping combined with microarray- or transcriptome-based cloning was used to identify the impaired genes. Mtsym19 and Mtsym20 mutants are defective in the same peptide NCR-new35 and the lack of NCR343 is responsible for the ineffective symbiosis of NF-FN9363. We found that the expression of NCR-new35 is significantly lower and limited to the transition zone of the nodule compared with other crucial NCRs. The fluorescent protein-tagged version of NCR343 and NCR-new35 localized to the symbiotic compartment. Our discovery added two additional members to the group of NCR genes essential for nitrogen-fixing symbiosis in M. truncatula.
Keywords: Medicago truncatula; indeterminate nodule; legume; nitrogen-fixing symbiosis; nodule-specific cysteine-rich peptide.
© 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.