Experimental Revelation of Surface and Bulk Lattices in Faceted Cu2 O Crystals

Small. 2023 Nov;19(44):e2303491. doi: 10.1002/smll.202303491. Epub 2023 Jun 28.

Abstract

Semiconductor crystals have generally shown facet-dependent electrical, photocatalytic, and optical properties. These phenomena have been proposed to result from the presence of a surface layer with bond-level deviations. To provide experimental evidence of this structural feature, synchrotron X-ray sources are used to obtain X-ray diffraction (XRD) patterns of polyhedral cuprous oxide crystals. Cu2 O rhombic dodecahedra display two distinct cell constants from peak splitting. Peak disappearance during slow Cu2 O reduction to Cu with ammonia borane differentiates bulk and surface layer lattices. Cubes and octahedra also show two peak components, while diffraction peaks of cuboctahedra are comprised of three components. Temperature-varying lattice changes in the bulk and surface regions also show shape dependence. From transmission electron microscopy (TEM) images, slight plane spacing deviations in surface and inner crystal regions are measured. Image processing provides visualization of the surface layer with depths of about 1.5-4 nm giving dashed lattice points instead of dots from atomic position deviations. Close TEM examination reveals considerable variation in lattice spot size and shape for different particle morphologies, explaining why facet-dependent properties are emerged. Raman spectrum reflects the large bulk and surface lattice difference in rhombic dodecahedra. Surface lattice difference can change the particle bandgap.

Keywords: cuprous oxide; facet-dependent properties; pseudomorphic conversion; surface layer lattice; synchrotron X-ray diffraction.