The ability to bind plasma proteins helps in comprehending relevant aspects related to the pharmacological properties of many drugs. Despite the vital role of the drug mubritinib (MUB) in the prophylaxis of various diseases, its interaction with carrier proteins still needs to be clarified. The present work focuses on the interaction between MUB and Human serum albumin (HSA), investigated by employing multispectroscopic, biochemical, and molecular docking approaches. The results reveal that MUB has quenched HSA intrinsic fluorescence (following a static mechanism) by attaching very close (r = 6.76 Å) and with moderate affinity (Kb ≈ 104 M-1) to the protein site I (mainly by H-bonds, hydrophobic and Van der Waals forces). On one side, the HSA-MUB interaction has been accompanied by a slight disturbance in the HSA chemical environment (around the Trp residue) and protein secondary structure modifications. On another side, MUB competitively inhibits HSA esterase-like activity, which is very similar to other Tyrosine kinase inhibitors, and evidence that protein functional alterations have been triggered by MUB interaction. In summary, all of the presented observations can shed light on diverse pharmacological factors associated with drug administration.
Keywords: Docking; Fluorescence; HSA; Interaction; Mubritinib.