Introduction/aims: The axon-reflex flare response is a reliable method for functional assessment of small fibers in diabetic peripheral neuropathy (DPN), but broad adoption is limited by the time requirement. The aims of this study were to (1) assess diagnostic performance and optimize time required for assessing the histamine-induced flare response and (2) associate with established parameters.
Methods: A total of 60 participants with type 1 diabetes with (n = 33) or without (n = 27) DPN participated. The participants underwent quantitative sensory testing (QST), corneal confocal microscopy (CCM), and flare intensity and area size assessments by laser-Doppler imaging (FLPI) following an epidermal skin-prick application of histamine. The flare parameters were evaluated each minute for 15 min, and the diagnostic performance compared to QST and CCM were assessed using area under the curve (AUC). Minimum time-requirements until differentiation and to achieve results comparable with a full examination were assessed.
Results: Flare area size had better diagnostic performance compared with CCM (AUC 0.88 vs. 0.77, p < 0.01) and QST (AUC 0.91 vs. 0.81, p = 0.02) than mean flare intensity, and could distinguish people with and without DPN after 4 min compared to after 6 min (both p < 0.01). Flare area size achieved a diagnostic performance comparable to a full examination after 6 and 7 min (CCM and QST respectively, p > 0.05), while mean flare intensity achieved it after 5 and 8 min (CCM and QST respectively, p > 0.05).
Discussion: The flare area size can be evaluated 6-7 min after histamine-application, which increases diagnostic performance compared to mean flare intensity.
Keywords: diabetic peripheral neuropathy; neurogenic inflammation.
© 2023 The Authors. Muscle & Nerve published by Wiley Periodicals LLC.