Cerebral palsy is a neurodevelopmental disease characterized by postural, motor, and cognitive disorders, being one of the main causes of physical and intellectual disability in childhood. To minimize functional impairments, the use of resveratrol as a therapeutic strategy is highlighted due to its neuroprotective and antioxidant effects in different regions of the brain. Thus, this study aimed to investigate the effects of neonatal treatment with resveratrol on postural development, motor function, oxidative balance, and mitochondrial biogenesis in the brain of rats submitted to a cerebral palsy model. Neonatal treatment with resveratrol attenuated deficits in somatic growth, postural development, and muscle strength in rats submitted to cerebral palsy. Related to oxidative balance, resveratrol in cerebral palsy decreased the levels of MDA and carbonyls. Related to mitochondrial biogenesis, was observed in animals with cerebral palsy treated with resveratrol, an increase in mRNA levels of TFAM, in association with the increase of citrate synthase activity. The data demonstrated a promising effect of neonatal resveratrol treatment, improving postural and muscle deficits induced by cerebral palsy. These findings were associated with improvements in oxidative balance and mitochondrial biogenesis in the brain of rats submitted to cerebral palsy.
Keywords: Cerebral palsy; Mitochondrial function; Oxidative stress; Posture; Resveratrol.
Copyright © 2023 Elsevier Ltd. All rights reserved.