The emergence and spread of multidrug-resistant (MDR) Klebsiella pneumoniae strains have increased worldwide, posing a significant health threat by limiting the therapeutic options. This study aimed to investigate the antimicrobial potential of cinnamaldehyde against MDR-K. pneumoniae strains in vitro and in vivo assays. The presence of resistant genes in MDR- K. pneumoniae strains were evaluated by Polymerase Chain Reaction (PCR) and DNA sequencing. Carbapenem-resistant K. pneumoniae strains show the blaKPC-2 gene, while polymyxin-resistant K. pneumoniae presented blaKPC-2 and alterations in the mgrB gene. Cinnamaldehyde exhibited an inhibitory effect against all MDR- K. pneumoniae evaluated. An infected mice model was used to determine the in vivo effects against two K. pneumoniae strains, one carbapenem-resistant and another polymyxin-resistant. After 24 h of cinnamaldehyde treatment, the bacterial load in blood and peritoneal fluids decreased. Cinnamaldehyde showed potential effectiveness as an antibacterial agent by inhibiting the growth of MDR-K. pneumoniae strains.
Keywords: Cinnamaldehyde; Gram-negative; Infection; Multidrug-resistant.
© 2023. The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia.