Parasporins of Bacillus thuringiensis (Bt) exhibit specific toxicity to cancer cells. PCR based mining has identified apoptosis inducing parasporin in KAU41 Bt isolate from the Western Ghats of India. The study aimed to clone and overexpress the parasporin of native KAU41 Bt isolate for determining structural and functional characteristics of the protein. Parasporin gene was cloned in pGEM-T, sequenced, sub-cloned in pET30+ and overexpressed in Escherichia coli. The expressed protein was characterized by SDS-PAGE and in silico methods. Cytotoxicity of cleaved peptide was assessed by MTT assay. SDS-PAGE displayed a 31 kDa protein (rp-KAU41) overexpressed. Upon proteinase K digestion, the protein was cleaved into 29 kDa peptide which was found to be cytotoxic to HeLa cells. The protein has a deduced sequence of 267 amino acids with β-strands folding pattern of crystal protein. Even though rp-KAU41 shared a 99.15% identity to chain-A of non-toxic crystal protein, it only showed a less similarity to the existing parasporins like PS4 (38%) and PS5 (24%) in UPGMA analysis, emphasizing the novelty of rp-KAU41. The protein is predicted to have more similarity to the pore forming toxins of Aerolysin superfamily and an additional loop in rp-KAU41 may be contributing towards its cytotoxicity. The molecular docking with caspase 3 resulted in higher Z dock and Z rank score substantiating its role in the activation of intrinsic pathway of apoptosis. The recombinant parasporin protein, rp-KAU41 is presumed to belong to the Aerolysin superfamily. An interaction with caspase 3 substantiates its role in activating the intrinsic pathway of apoptosis in cancer cells.
Keywords: Bacillus thuringiensis; cloning; cytotoxicity; in silico; parasporin.
© 2023 Wiley Periodicals LLC.