The study of photocatalysts fixed to surfaces for the inactivation of bacteria in wastewater has increased in recent years. However, there are no standardized methods to analyze the photocatalytic antibacterial activity of these materials, and no systematic studies have attempted to relate this activity to the number of reactive oxygen species generated during UV-light irradiation. Additionally, studies regarding photocatalytic antibacterial activity are usually carried out with varying pathogen concentrations, UV light doses, and catalyst amounts, making it difficult to compare results across different materials. The work introduces the photocatalytic bacteria inactivation efficiency (PBIE) and bacteria inactivation potential of hydroxyl radicals (BIPHR) figures of merit for evaluating the photocatalytic activity of catalysts fixed onto surfaces for bacteria inactivation. To demonstrate their applicability, these parameters are calculated for various photocatalytic TiO2 -based coatings, accounting for the catalyst area, the kinetic reaction rate constant associated with bacteria inactivation and hydroxyl radical formation, reactor volume, and UV light dose. This approach enables a comprehensive comparison of photocatalytic films prepared by different fabrication techniques and evaluated under diverse experimental conditions, with potential applications in the design of fixed-bed reactors.
Keywords: TiO2; bacteria inactivation; fixed bed reactors; photocatalysis.
© 2023 Wiley-VCH GmbH.