Antibodies triggering Fc-mediated NK cell activity may contribute to protection against disease caused by SARS-CoV-2 infection in humans. However, how these Fc-mediated humoral responses compare between individuals displaying hybrid immunity (Vac-ex) and those fully vaccinated with no history of SARS-CoV-2 infection (Vac-n) and whether they correlate with neutralizing antibody (NtAb) responses remains largely undetermined. In this retrospective study serum samples from 50 individuals (median age, 44.5 years; range, 11-85; 25 males), 25 Vac-ex and 25 Vac-n were studied. A flow-cytometry-based antibody-mediated NK-cell activation assay was used to quantitate effector NK-cells stimulated to express LAMP1 (lysosomal associated membrane protein 1), MIP1 (Macrophage inflammatory protein 1), and interferon-γ (IFNγ); NK cells isolated from two donors (D1 and D2) were used. NtAb levels targeting the Spike protein of Wuhan-Hu-1 and Omicron BA.1 SARS-CoV-2 variants were quantitated using a SARS-CoV-2 S pseudotyped neutralization assay. Regardless of the SARS-CoV-2 variant S antigen used in the NK-cell activation assay, the frequency of NK cells stimulated to express LAMP-1, MIP1β, and IFNγ was higher in Vac-ex compared with Vac-n (p values ranging from 0.07 to 0.006) for D1; this was only seen for BA.1 when NK cells from D2 were employed. The frequency of functional NK cells activated by antibody binding to either Wuhan-Hu-1 or Omicron BA.1 S protein was not significantly different for both VAC-ex and VAC-n. In contrast, NtAb titers against BA.1 were around 10-fold lower than that against Wuhan-Hu-1. Vac-ex displayed higher NtAb titers against both (sub)variants than Vac-n. NK-cell responses correlated poorly with NtAb titers (ρ ≤ 0.30). The data demonstrate higher cross-reactivity across variants of concern for antibodies triggering Fc-mediated NK cell than for NtAb. Moreover, Vac-Ex seemed to display more robust functional antibody responses as compared with Vac-n.
Keywords: Fc effector NK-cell-mediated activity; Omicron BA.1; SARS-CoV-2; anti-receptor-binding domain antibodies; neutralizing antibodies; spike protein.
© 2023 The Authors. Journal of Medical Virology published by Wiley Periodicals LLC.