Classical yeast surface display (YSD) antibody immune libraries are generated by a separate amplification of heavy- and light-chain antibody variable regions (VH and VL, respectively) and subsequent random recombination during the molecular cloning procedure. However, each B cell receptor comprises a unique VH-VL combination, which has been selected and affinity matured in vivo for optimal stability and antigen binding. Thus, the native variable chain pairing is important for the functioning and biophysical properties of the respective antibody. Herein, we present a method for the amplification of cognate VH-VL sequences, compatible with both next-generation sequencing (NGS) and YSD library cloning. We employ a single B cell encapsulation in water-in-oil droplets, followed by a one-pot reverse transcription overlap extension PCR (RT-OE-PCR), resulting in a paired VH-VL repertoire from more than a million B cells in a single day.
Keywords: Droplet PCR; Immune library; Natively heavy-light-chain paired antibody repertoires; Next-generation sequencing; Yeast surface display.
© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.