Background: De novo donor-specific antibodies (dnDSAs) may cause antibody-mediated rejection and graft dysfunction. Little is known about the clinical course after first detection of dnDSAs during screening in asymptomatic patients. We aimed to assess the value of estimated glomerular filtration rate (eGFR) and proteinuria to predict graft failure in patients with dnDSAs and their potential utility as surrogate endpoints.
Methods: All 400 kidney transplant recipients with dnDSAs at our centre (1 March 2000-31 May 2021) were included in this retrospective study. The dates of graft loss, rejection, doubling of creatinine, ≥30% eGFR decline, proteinuria ≥500 mg/g and ≥1000 mg/g were registered from the first dnDSA appearance.
Results: During 8.3 years of follow-up, graft failure occurred in 33.3% of patients. Baseline eGFR and proteinuria correlated with 5-year graft loss (area under the receiver operating characteristics curve 0.75 and 0.80, P < .001). Creatinine doubled after a median of 2.8 years [interquartile range (IQR) 1.5-5.0] from dnDSA and the time from doubling creatinine to graft failure was 1.0 year (IQR 0.4-2.9). Analysing eGFR reduction ≥30% as a surrogate endpoint (148/400), the time from dnDSA to this event was 2.0 years (IQR 0.6-4.2), with a positive predictive value (PPV) of 45.9% to predict graft loss, which occurred after 2.0 years (IQR 0.8-3.2). The median time from proteinuria ≥500 mg/g and ≥1000 mg/g to graft failure was identical, 1.8 years, with a PPV of 43.8% and 49.0%, respectively. Composite endpoints did not improve PPV. Multivariable analysis showed that rejection was the most important independent risk factor for all renal endpoints and graft loss.
Conclusions: Renal function, proteinuria and rejection are strongly associated with graft failure in patients with dnDSA and may serve as surrogate endpoints.
Keywords: GFR; acute rejection; biomarkers; kidney transplantation; proteinuria.
© The Author(s) 2023. Published by Oxford University Press on behalf of the ERA.