Isatin-3-(7'-Methoxychromone-3'-methylidene) hydrazone (L) was synthesized based on chromone schiff base, and used to construct a novel sensor to detect Cr3+. Fluorescence detection experiments were carried out for a range of different concentrations of Cr3+ in aqueous solutions. A concentration calculation model was built on the basis of eliminating interference of excitation spectrum in the fluorescence spectra with mathematical method. Results showed that probe L displayed a 70-fold fluorescence enhancement upon the addition of Cr3+ due to the photo-induced electron transfer (PET) effect. On the other hand, metal ions except Cr3+ did not cause significant change in either the absorption or the fluorescence spectrum of L. In addition, L showed a good selectivity to Cr3+ over other metal cations, especially Al3+ and Cu2+. The probe L can detect Cr3+ highly and selectively by the direct chelation enhanced fluorescence with a detection limit of 3.14 × 10-6 M. Furthermore, benefiting from their good water solubility and biocompatibility, cell imaging and real-time monitoring of Cr3+ in living HepG2 cells were successfully achieved.
Keywords: Bioimaging; Cr(3+) detection; Fluorescence spectra; Isatin-3-(7′-Methoxychromone-3′-methylidene) hydrazine; Synthesis.
Copyright © 2023. Published by Elsevier Inc.