Implementing IPM in crop management simultaneously improves the health of managed bees and enhances the diversity of wild pollinator communities

Sci Rep. 2023 Jul 7;13(1):11033. doi: 10.1038/s41598-023-38053-5.

Abstract

Impacts of insecticide use on the health of wild and managed pollinators have been difficult to accurately quantify in the field. Existing designs tend to focus on single crops, even though highly mobile bees routinely forage across crop boundaries. We created fields of pollinator-dependent watermelon surrounded by corn, regionally important crops in the Midwestern US. These fields were paired at multiple sites in 2017-2020 with the only difference being pest management regimes: a standard set of conventional management (CM) practices vs. an integrated pest management (IPM) system that uses scouting and pest thresholds to determine if/when insecticides are used. Between these two systems we compared the performance (e.g., growth, survival) of managed pollinators-honey bees (Apis mellifera), bumble bees (Bombus impatiens)-along with the abundance and diversity of wild pollinators. Compared to CM fields, IPM led to higher growth and lower mortality of managed bees, while also increasing the abundance (+ 147%) and richness (+ 128%) of wild pollinator species, and lower concentrations of neonicotinoids in the hive material of both managed bees. By replicating realistic changes to pest management, this experiment provides one of the first demonstrations whereby tangible improvements to pollinator health and crop visitation result from IPM implementation in agriculture.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bees* / physiology
  • Behavior, Animal
  • Crops, Agricultural*
  • Pest Control*
  • Pollination*