Visible light-mediated cross-linking has utility for enhancing the structural capacity and shape fidelity of laboratory-based polymers. With increased light penetration and cross-linking speed, there is opportunity to extend future applications into clinical spheres. This study evaluated the utility of a ruthenium/sodium persulfate photocross-linking system for increasing structural control in heterogeneous living tissues as an example, focusing on unmodified patient-derived lipoaspirate for soft tissue reconstruction. Freshly-isolated tissue is photocross-linked, then the molar abundance of dityrosine bonds is measured using liquid chromatography tandem mass spectrometry and the resulting structural integrity assessed. The cell function and tissue survival of photocross-linked grafts is evaluated ex vivo and in vivo, with tissue integration and vascularization assessed using histology and microcomputed tomography. The photocross-linking strategy is tailorable, allowing progressive increases in the structural fidelity of lipoaspirate, as measured by a stepwise reduction in fiber diameter, increased graft porosity and reduced variation in graft resorption. There is an increase in dityrosine bond formation with increasing photoinitiator concentration, and tissue homeostasis is achieved ex vivo, with vascular cell infiltration and vessel formation in vivo. These data demonstrate the capability and applicability of photocrosslinking strategies for improving structural control in clinically-relevant settings, potentially achieving more desirable patient outcomes using minimal manipulation in surgical procedures.
Keywords: fat grafting; patient-derived tissues; photocross-linking; structural control.
© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.