In 2021, Klebsiella pneumoniae sequence type 307 (ST307) strains causing pulmonary and bloodstream infections identified in a hospital in Rome, Italy, reached high levels of resistance to ceftazidime-avibactam (CZA). One of these strains reached high levels of resistance to both CZA and carbapenems and carried two copies of blaKPC-3 and one copy of blaKPC-31 located on plasmid pKpQIL. The genomes and plasmids of CZA-resistant ST307 strains were analyzed to identify the molecular mechanisms leading to the evolution of resistance and compared with ST307 genomes at local and global levels. A complex pattern of multiple plasmids in rearranged configurations, coresident within the CZA-carbapenem-resistant K. pneumoniae strain, was observed. Characterization of these plasmids revealed recombination and segregation events explaining why K. pneumoniae isolates from the same patient had different antibiotic resistance profiles. This study illustrates the intense genetic plasticity occurring in ST307, one of the most worldwide-diffused K. pneumoniae high-risk clones.
Keywords: KPC-31; Klebsiella pneumoniae; ST307; antimicrobial resistance; carbapenems; ceftazidime-avibactam; high-risk clone; plasmid; plasmid sequencing.