Phase/Interfacial-Engineered Two-Dimensional-Layered WSe2 Films by a Plasma-Assisted Selenization Process: Modulation of Oxygen Vacancies in Resistive Random-Access Memory

ACS Appl Mater Interfaces. 2023 Jul 19;15(28):33858-33867. doi: 10.1021/acsami.3c05384. Epub 2023 Jul 10.

Abstract

Here, we propose phase and interfacial engineering by inserting a functional WO3 layer and selenized it to achieve a 2D-layered WSe2/WO3 heterolayer structure by a plasma-assisted selenization process. The 2D-layered WSe2/WO3 heterolayer was coupled with an Al2O3 film as a resistive switching (RS) layer to form a hybrid structure, with which Pt and W films were used as the top and bottom electrodes, respectively. The device with good uniformity in SET/RESET voltage and high low-/high-resistance window can be obtained by controlling a conversion ratio from a WO3 film to a 2D-layered WSe2 thin film. The Pt/Al2O3/(2D-layered WSe2/WO3)/W structure shows remarkable improvement to the pristine Pt/Al2O3/W and Pt/Al2O3/2D-layered WO3/W in terms of low SET/RESET voltage variability (-20/20)%, multilevel characteristics (uniform LRS/HRS distribution), high on/off ratio (104-105), and retention (∼105 s). The thickness of the obtained WSe2 was tuned at different gas ratios to optimize different 2D-layered WSe2/WO3 (%) ratios, showing a distinctive trend of reduced and uniform SET/RESET voltage variability as 2D-layered WSe2/WO3 (%) changes from 90/10 (%) to 45/55 (%), respectively. The electrical measurements confirm the superior ability of the metallic 1T phase of the 2D-layered WSe2 over the semiconducting 2H phase. Through systemic studies of RS behaviors on the effect of 1T/2H phases and 2D-layered WSe2/WO3 ratios, the low-temperature plasma-assisted selenization offers compatibility with the temperature-limited 3D integration process and also provides much better thickness control over a large area.

Keywords: 2D layered-WSe2/WO3; conducting filament; interfacial engineering; plasma-assisted chemical vapor reaction; the functional layer.