Application of the prostate-specific antigen (PSA) test, which measures PSA levels in blood, is standard in prostate cancer (PCa) screening. However, because PSA levels may be elevated for reasons other than PCa, it leads to high rates of misdiagnosis and overtreatment. Recently, alteration in the N-glycan sialylation of PSA, specifically increased levels of α2-3-linked N-acetylneuraminic acid (α2-3-Neu5Ac or α2-3-sialic acid), was identified as a potential biomarker for clinically significant PCa. Here, we introduce a robust top-down native mass spectrometry (MS) approach, performed using a combination of α2-3-Neu5Ac-specific and nonspecific neuraminidases and employing center-of-mass monitoring (CoMMon), for quantifying the levels of α2-3-Neu5Ac as a fraction of total N-linked Neu5Ac present on PSA extracted from blood serum. To illustrate the potential of the assay for clinical diagnosis and disease staging of PCa, the percentages of α2-3-Neu5Ac on PSA (%α23PSA) in the serum of low-grade (International Society of Urological Pathology Grade Group/GG1), intermediate-grade (GG2), and high-grade (GG3,4,5) PCa individuals were measured. We observed a high sensitivity (85.5%) and specificity (84.6%) for discrimination of GG1 from clinically significant GG2-5 patients when using a %α23PSA test cut-off of 28.0%. Our results establish that the %α23PSA in blood serum PSA, which can be precisely measured in a non-invasive manner with our dual neuraminidase native MS/CoMMon assay, can discriminate between clinically significant PCa (GG2-5) and low-grade PCa (GG1). Such discrimination has not been previously achieved and represents an important clinical need. This assay could greatly improve the standard PSA test and serve as a valuable PCa diagnostic tool.