Objectives: Patent ductus arteriosus (PDA) is a vascular defect common in preterm infants and often requires treatment to avoid associated long-term morbidities. Echocardiography is the primary tool used to diagnose and monitor PDA. We trained a deep learning model to identify PDA presence in relevant echocardiographic images.
Methods: Echocardiography video clips (n = 2527) in preterm infants were reviewed by a pediatric cardiologist and those relevant to PDA diagnosis were selected and labeled (PDA present/absent/indeterminate). We trained a convolutional neural network to classify each echocardiography frame of a clip as belonging to clips with or without PDA. A novel attention mechanism that aggregated predictions for all frames in each clip to obtain a clip-level prediction by weighting relevant frames.
Results: In early model iterations, we discovered training with color Doppler echocardiography clips produced the best performing classifier. For model training and validation, 1145 such clips from 66 patients (661 PDA+ clips, 484 PDA- clips) were used. Our best classifier for clip level performance obtained sensitivity of 0.80 (0.83-0.90), specificity of 0.77 (0.62-0.92) and AUC of 0.86 (0.83-0.90). Study level performance obtained sensitivity of 0.83 (0.72-0.94), specificity of 0.89 (0.79-1.0) and AUC of 0.93 (0.89-0.98).
Conclusions: Our novel deep learning model demonstrated strong performance in classifying echocardiography clips with and without PDA. Further model development and external validation are warranted. Ultimately, integration of such a classifier into auto detection software could streamline PDA imaging workflow. This work is the first step toward semi-automated, bedside detection of PDA in preterm infants.
Keywords: artificial intelligence; patent ductus arteriosus; preterm infants.
© 2023 American Institute of Ultrasound in Medicine.