Jets provide us with ideal probes of the quark-gluon plasma (QGP) produced in heavy-ion collisions, since its dynamics at its different scales is imprinted into the multiscale substructure of the final state jets. We present a new approach to jet substructure in heavy-ion collisions based on the study of correlation functions of energy flow operators. By analyzing the two-point correlator of an in-medium quark jet, we demonstrate that the spectra of correlation functions robustly identify the scales defined by the properties of the QGP, particularly those associated with the onset of color coherence.