Background: Cardiac exercise stress testing (EST) offers a non-invasive way in the management of patients with suspected coronary artery disease (CAD). However, up to 30% EST results are either inconclusive or non-diagnostic, which results in significant resource wastage. Our aim was to build machine learning (ML) based models, using patients demographic (age, sex) and pre-test clinical information (reason for performing test, medications, blood pressure, heart rate, and resting electrocardiogram), capable of predicting EST results beforehand including those with inconclusive or non-diagnostic results.
Methods: A total of 30,710 patients (mean age 54.0 years, 69% male) were included in the study with 25% randomly sampled in the test set, and the remaining samples were split into a train and validation set with a ratio of 9:1. We constructed different ML models from pre-test variables and compared their discriminant power using the area under the receiver operating characteristic curve (AUC).
Results: A network of Oblivious Decision Trees provided the best discriminant power (AUC=0.83, sensitivity=69%, specificity=0.78%) for predicting inconclusive EST results. A total of 2010 inconclusive ESTs were correctly identified in the testing set.
Conclusions: Our ML model, developed using demographic and pre-test clinical information, can accurately predict EST results and could be used to identify patients with inconclusive or non-diagnostic results beforehand. Our system could thus be used as a personalised decision support tool by clinicians for optimizing the diagnostic test selection strategy for CAD patients and to reduce healthcare expenditure by reducing nondiagnostic or inconclusive ESTs.
Keywords: Coronary artery disease; Decision support; Deep learning; Exercise stress testing; Pretest.
Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.