Metabolic clogging of mannose triggers dNTP loss and genomic instability in human cancer cells

Elife. 2023 Jul 18:12:e83870. doi: 10.7554/eLife.83870.

Abstract

Mannose has anticancer activity that inhibits cell proliferation and enhances the efficacy of chemotherapy. How mannose exerts its anticancer activity, however, remains poorly understood. Here, using genetically engineered human cancer cells that permit the precise control of mannose metabolic flux, we demonstrate that the large influx of mannose exceeding its metabolic capacity induced metabolic remodeling, leading to the generation of slow-cycling cells with limited deoxyribonucleoside triphosphates (dNTPs). This metabolic remodeling impaired dormant origin firing required to rescue stalled forks by cisplatin, thus exacerbating replication stress. Importantly, pharmacological inhibition of de novo dNTP biosynthesis was sufficient to retard cell cycle progression, sensitize cells to cisplatin, and inhibit dormant origin firing, suggesting dNTP loss-induced genomic instability as a central mechanism for the anticancer activity of mannose.

Keywords: cancer biology; cell biology; chemotherapy; dormant origins; genomic instability; human; mannose; metabolism; mouse; replication stress.

Plain language summary

In order to grow and divide, cells require a variety of sugars. Breaking down sugars provides energy for cells to proliferate and allows them to make more complex molecules, such as DNA. Although this principle also applies to cancer cells, a specific sugar called mannose not only inhibits cancer cell division but also makes them more sensitive to chemotherapy. These anticancer effects of mannose are particularly strong in cells lacking a protein known as MPI, which breaks down mannose. Evidence from honeybees suggests that a combination of mannose and low levels of MPI leads to a build-up of a modified form of mannose, called mannose-6-phosphate, within cells. As a result, pathways required to release energy from glucose become disrupted, proving lethal to these insects. However, it was not clear whether the same processes were responsible for the anticancer effects of mannose. To investigate, Harada et al. removed the gene that encodes the MPI protein in two types of human cancer cells. The experiments showed that mannose treatment was not lethal to these cells but overall slowed the cell cycle – a fundamental process for cell growth and division. More detailed biochemical experiments showed that cancer cells with excess mannose-6-phosphate could not produce the molecules required to make DNA. This prevented them from doubling their DNA – a necessary step for cell division – and responding to stress caused by chemotherapy. Harada et al. also noticed that cancer cells lacking MPI did not all react to mannose treatment in exactly the same way. Therefore, future work will address these diverse reactions, potentially providing an opportunity to use the mannose pathway to search for new cancer treatments.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cisplatin
  • DNA Replication
  • Genomic Instability
  • Humans
  • Mannose*
  • Neoplasms*
  • Nucleotides

Substances

  • Mannose
  • Cisplatin
  • Nucleotides