Strong Coulomb repulsion and spin-orbit coupling are known to give rise to exotic physical phenomena in transition metal oxides. Here, we report magnetic and transport characteristics of (001) oriented epitaxial SrMnxIr1-xO3thin films, having both 3dand 5delements on the perovskiteBsites. With the increase of Mn concentration, perpendicular magnetic anisotropy (PMA) decreases gradually in accompany with the magnetic easy axis tilting away from the out-of-plane [001] direction. X-ray absorption spectroscopy reveals that Mnegelectrons preferentially occupy thed3z2-r2orbital, which produces the observed PMA in the framework of spin-orbital coupling. A planar topological Hall effect appears in SrMnxIr1-xO3films withxabout 0.30 when the magnetic field is applied along the current, which is a result of the noncoplanar spin structure due to the competition among the PMA, the magnetic exchange interaction and the Zeeman energy. These results provide an example to show the subtle balance among complex competitions in materials with both strong correlation and spin-orbit coupling.
Keywords: Monte-Carlo simulations; magnetic anisotropy; topological Hall effect; transition metal oxides.
© 2023 IOP Publishing Ltd.