Watershed-scale assessment of environmental background values of soil potential toxic elements from the Caatinga and Atlantic forest ecotone in Brazil

Chemosphere. 2023 Oct:338:139394. doi: 10.1016/j.chemosphere.2023.139394. Epub 2023 Jul 17.

Abstract

The evaluation of the concentration of a potentially toxic element (PTE) in soils under native vegetation is the base study to obtain the quality reference values (QRVs), and the watershed is the strategic planning unit for decision making. The objective of this study was to determine the natural concentrations of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn and to establish QRVs for the Verruga river basin. Soils with no or minimal anthropic intervention from the surface layer (0.0-0.2 m) were collected and processed, and PTEs were extracted according to the USEPA 3051A method and determined by ICP‒OES. The quality of the analyses was checked by blank tests and soil samples certified SRM 2709 - San Joaquin Soil. The data set was subjected to exploratory analysis and multivariate statistics. The mean background concentrations of PTEs in soils showed high variability compared to other locations in Brazil and in the world and were (mg kg-1) Fe (24,300) > Mn (211.10) > Cr (40.98) > Zn (28.28) > Cu (10.68) > Ni (9.44) > Pb (4.95) > Co (4.08) > As (3.48) > Cd (0.09). The QRVs for the PTEs were established based on the 75th percentile, where (mg kg-1) Mn (124.59) > Cr (54.51) > Zn (31.66) > Cu (7.89) > Ni (7.20) > Pb (5.98) > As (4.05) > Co (3.40) > Cd (0.10). The chemical attributes and topography variation along the watershed are very heterogeneous and influence the dynamics of the PTEs. This survey will support future research on the impact of human activities on soil contamination in the watershed. This survey will support future research on environmental monitoring and the impacts caused by increased human activities on soil contamination in the Verruga river watershed, in the state of Bahia, Brazil.

Keywords: Environmental monitoring; Environmentally available; Heavy metals; Oxisols; Trace-elements; Ultisols.

MeSH terms

  • Brazil
  • Cadmium / analysis
  • Environmental Monitoring / methods
  • Forests
  • Humans
  • Lead / analysis
  • Metals, Heavy* / analysis
  • Risk Assessment
  • Soil
  • Soil Pollutants* / analysis

Substances

  • Soil
  • Metals, Heavy
  • Cadmium
  • Lead
  • Soil Pollutants