Clonal origin of KMT2A wild-type lineage-switch leukemia following CAR-T cell and blinatumomab therapy

Nat Cancer. 2023 Aug;4(8):1095-1101. doi: 10.1038/s43018-023-00604-0. Epub 2023 Jul 20.

Abstract

Children with acute lymphoblastic leukemia (ALL) undergoing anti-CD19 therapy occasionally develop acute myeloid leukemia (AML). The clonal origin of such lineage-switch leukemias1-4 remains unresolved. Here, we reconstructed the phylogeny of multiple leukemias in a girl who, following multiply relapsed ALL, received anti-CD19 cellular and antibody treatment and subsequently developed AML. Whole genome sequencing unambiguously revealed the AML derived from the initial ALL, with distinct driver mutations that were detectable before emergence. Extensive prior diversification and subsequent clonal selection underpins this fatal lineage switch. Genomic monitoring of primary leukemias and recurrences may predict therapy resistance, especially regarding anti-CD19 treatment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antibodies, Bispecific* / therapeutic use
  • Child
  • Female
  • Humans
  • Leukemia, Myeloid, Acute* / drug therapy
  • Leukemia, Myeloid, Acute* / genetics
  • Precursor Cell Lymphoblastic Leukemia-Lymphoma* / drug therapy
  • Precursor Cell Lymphoblastic Leukemia-Lymphoma* / genetics
  • T-Lymphocytes

Substances

  • blinatumomab
  • Antibodies, Bispecific