Effect of prey density on the performance of Eupeodes corollae and its predation rate against the cabbage aphid, Brevicorynae brassicae (L.)

Bull Entomol Res. 2023 Oct;113(5):598-603. doi: 10.1017/S0007485323000275. Epub 2023 Jul 21.

Abstract

Eupeodes corollae (F.) (Diptera: Syrphidae) is the most abundant syrphid fly which is distributed worldwide and is the sole predator of aphids. Therefore, the present study was conducted to evaluate the predation rate and functional response of E. corollae against the cabbage aphid, Brevicoryne brassicae (L.). The experiment was carried out under laboratory conditions at 25 ± 2°C with 60-70% relative humidity. The results revealed that age-specific net predation rate (qx) increased after the 4th day and a peak was recorded on the 10th day of pivotal age in the third larval instar. The stable host kill rate and finite host kill rate of E. corollae were 18.63 and 21.07, respectively, against the B. brassicae and predicted that a mean of 20.78 aphids was needed for E. corollae to produce one offspring. A negative linear coefficient (P < 0) indicated the type II functional response for all larval instars of E. corollae against the B. brassicae. At higher prey density, the prey consumption was significantly at par with second and third instar larvae of E. corollae as the prey consumption was increased with increasing the prey density, which then decreased after attaining the upper asymptote (76.40 and 81.40% consumption, respectively). The Roger's predator random equation for type II functional response was fitted to estimate attack rate (a) and handling time (Th). The maximum prey consumption was recorded for third instar of E. corollae with a higher attack rate (0.336 h-1) and lower handling time (0.514 h) against B. brassicae, followed by the second and first instar. Thus, it is concluded that the third larval instar of E. corollae was the voracious feeder and used as an efficient biocontrol agent in the IPM programme.

Keywords: attack rate; cabbage aphid; feeding potential; functional response; handling time; host kill rate; syrphid fly.

MeSH terms

  • Animals
  • Aphids* / physiology
  • Diptera*
  • Larva / physiology
  • Predatory Behavior