Metagenomics reveals the structure of Mastrevirus-host interaction network within an agro-ecosystem

Virus Evol. 2023 Jul 6;9(2):vead043. doi: 10.1093/ve/vead043. eCollection 2023.

Abstract

As highly pervasive parasites that sometimes cause disease, viruses are likely major components of all natural ecosystems. An important step towards both understanding the precise ecological roles of viruses and determining how natural communities of viral species are assembled and evolve is obtaining full descriptions of viral diversity and distributions at ecosystem scales. Here, we focused on obtaining such 'community-scale' data for viruses in a single genus. We chose the genus Mastrevirus (family Geminiviridae), members of which have predominantly been found infecting uncultivated grasses (family Poaceae) throughout the tropical and sub-tropical regions of the world. We sampled over 3 years, 2,884 individual Poaceae plants belonging to thirty different species within a 2-ha plot which included cultivated and uncultivated areas on the island of Reunion. Mastreviruses were found in ∼8 per cent of the samples, of which 96 per cent did not have any discernible disease symptoms. The multitude of host-virus associations that we uncovered reveals both the plant species that most commonly host mastreviruses and the mastrevirus species (such as maize streak virus and maize streak Reunion virus) that have especially large host ranges. Our findings are consistent with the hypothesis that perennial plant species capable of hosting years-long mixed mastrevirus infections likely play a disproportionately important role in the generation of inter-species and inter-strain mastrevirus recombinants.

Keywords: CRESS DNA viruses; host range; recombination; viral ecology.