Unique Spectrum of Activating BRAF Alterations in Prostate Cancer

Clin Cancer Res. 2023 Oct 2;29(19):3948-3957. doi: 10.1158/1078-0432.CCR-23-1393.

Abstract

Purpose: Alterations in BRAF have been reported in 3% to 5% of prostate cancer, although further characterization is lacking. Here, we describe the nature of BRAF alterations in prostate cancer using a large cohort from commercially available tissue and liquid biopsies subjected to comprehensive genomic profiling (CGP).

Experimental design: Tissue and liquid biopsies from patients with prostate cancer were profiled using FoundationOne CDx and FoundationOne Liquid CDx CGP assays, respectively. Tissue biopsies from non-prostate cancer types were used for comparison (n = 275,151). Genetic ancestry was predicted using a single-nucleotide polymorphism (SNP) based approach.

Results: Among 15,864 tissue biopsies, BRAF-activating alterations were detected in 520 cases (3.3%). The majority (463 samples, 2.9%) harbored class II alterations, including BRAF rearrangements (243 samples, 1.5%), K601E (101 samples, 0.6%), and G469A (58 samples, 0.4%). BRAF-altered prostate cancers were enriched for CDK12 mutations (OR, 1.87; 9.2% vs. 5.2%; P = 0.018), but depleted in TMPRSS2 fusions (OR, 0.25; 11% vs. 32%; P < 0.0001), PTEN alterations (OR, 0.47; 17% vs. 31%; P < 0.0001), and APC alterations (OR, 0.48; 4.4% vs. 8.9%; P = 0.018) relative to BRAF wild-type (WT) disease. Compared with patients of European ancestry, BRAF alterations were more common in tumors from patients of African ancestry (5.1% vs. 2.9%, P < 0.0001) and Asian ancestry (6.0% vs. 2.9%, P < 0.001).

Conclusions: Activating BRAF alterations were detected in approximately 3% of prostate cancers, and most were class II mutations and rearrangements; BRAF V600 mutations were exceedingly rare. These findings suggest that BRAF activation in prostate cancer is unique from other cancers and supports further clinical investigation of therapeutics targeting the mitogen-activated protein kinase (MAPK) pathway.

MeSH terms

  • Humans
  • Male
  • Mutation
  • Prostatic Neoplasms* / genetics
  • Proto-Oncogene Proteins B-raf* / genetics

Substances

  • Proto-Oncogene Proteins B-raf
  • BRAF protein, human