Associations between 3D surface scanner derived anthropometric measurements and body composition in a cross-sectional study

Eur J Clin Nutr. 2023 Oct;77(10):972-981. doi: 10.1038/s41430-023-01309-4. Epub 2023 Jul 21.

Abstract

Background: 3D laser-based photonic scanners are increasingly used in health studies to estimate body composition. However, too little is known about whether various 3D body scan measures estimate body composition better than single standard anthropometric measures, and which body scans best estimate it. Furthermore, little is known about differences by sex and age.

Methods: 105 men and 96 women aged between 18 and 90 years were analysed. Bioelectrical Impedance Analysis was used to estimate whole relative fat mass (RFM), visceral adipose tissue (VAT) and skeletal muscle mass index (SMI). An Anthroscan VITUSbodyscan was used to obtain 3D body scans (e.g. volumes, circumferences, lengths). To reduce the number of possible predictors that could predict RFM, VAT and SMI backward elimination was performed. With these selected predictors linear regression on the respective body compositions was performed and the explained variations were compared with models using standard anthropometric measurements (Body Mass Index (BMI), waist circumference (WC) and waist-to-height-ratio (WHtR)).

Results: Among the models based on standard anthropometric measures, WC performed better than BMI and WHtR in estimating body composition in men and women. The explained variations in models including body scan variables are consistently higher than those from standard anthropometrics models, with an increase in explained variations between 5% (RFM for men) and 10% (SMI for men). Furthermore, the explained variation of body composition was additionally increased when age and lifestyle variables were added. For each of the body composition variables, the number of predictors differed between men and women, but included mostly volumes and circumferences in the central waist/chest/hip area and the thighs.

Conclusions: 3D scan models performed better than standard anthropometric measures models to predict body composition. Therefore, it is an advantage for larger health studies to look at body composition more holistically using 3D full body surface scans.