Purpose: A pediatric normal tissue effects in the clinic (PENTEC) comprehensive review of patients with childhood cancer who received radiation therapy (RT) to the liver was performed to develop models that may inform RT dose constraints for the liver and improve risk forecasting of toxicities.
Methods and materials: A systematic literature search was performed to identify published data on hepatic toxicities in children. Treatment and outcome data were extracted and used to generate normal tissue complication probability (NTCP) models. Complications from both whole and partial liver irradiation were considered. For whole liver irradiation, total body irradiation and non-total body irradiation treatments were considered, but it was assumed that the entire liver received the prescribed dose. For partial liver irradiation, only Wilms tumor flank field RT could be analyzed. However, a prescribed dose assumption could not be applied, and there was a paucity of analyzable liver dosimetry data. To associate the dose-volume exposures with the partial volume complication data from flank irradiation, liver dose-volume metrics were reconstructed for Wilms tumor flank RT using age-specific computational phantoms as a function of field laterality and superior extent of the field.
Results: The literature search identified 2103 investigations pertaining to hepatic sinusoidal obstructive syndrome (SOS) and liver failure in pediatric patients. All abstracts were screened, and 241 articles were reviewed in full by the study team. A model was developed to calculate the risk of developing SOS after whole liver RT. RT dose (P = .006) and receipt of nonalkylating chemotherapy (P = .01) were significant. Age <20 years at time of RT was borderline significant (P = .058). The model predicted a 2% risk of SOS with zero RT dose, 6.1% following 10 Gy, and 14.5% following 20 Gy to the whole liver (modeled as the linear-quadratic equivalent dose in 2-Gy fractions [α/β = 3 Gy]). Patients with Wilms tumor treated with right flank RT had a higher observed rate of SOS than patients receiving left flank RT, but data were insufficient to generate an NTCP model for partial liver irradiation. From the phantom-based dose reconstructions, mean liver dose was estimated to be 2.16 ± 1.15 Gy and 6.54 ± 2.50 Gy for left and right flank RT, respectively, using T10-T11 as the superior field border and a prescription dose of 10.8 Gy (based on dose reconstruction). Data were sparse regarding rates of late liver injury after RT, which suggests low rates of severe toxicity after treatment for common pediatric malignancies.
Conclusions: This pediatric normal tissue effects in the clinic (PENTEC) review provides an NTCP model to estimate the risk of hepatic SOS as a function of RT dose following whole liver RT and quantifies the range of mean liver doses from typical Wilms tumor flank irradiation fields. Patients treated with right flank RT had higher rates of SOS than patients treated with left flank RT, but data were insufficient to develop a model for partial liver irradiation. Risk of SOS was estimated to be approximately ≤6% in pediatric patients receiving whole liver doses of <10 Gy.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.