Cleavage of semaphorin 4 C interferes with the neuroprotective effect of the semaphorin 4 C/Plexin B2 pathway on experimental intracerebral hemorrhage in rats

J Chem Neuroanat. 2023 Oct:132:102318. doi: 10.1016/j.jchemneu.2023.102318. Epub 2023 Jul 22.

Abstract

Semaphorin 4 C (SEMA4C) and its cognate receptor Plexin B2 are important regulators of axon guidance and are involved in many neurological diseases, in which SEMA4C acts not only as a ligand ("forward" mode) but also as a signaling receptor ("reverse" mode). However, the role of SEMA4C/Plexin B2 in intracerebral hemorrhage (ICH) remains unclear. In this study, ICH in adult male Sprague-Dawley rats was induced by autologous blood injection in the right basal ganglia. In vitro, cultured primary neurons were subjected to OxyHb to imitate ICH injury. Recombinant SEMA4C (rSEMA4C) and overexpressing lentiviruses encoding full-length SEMA4C or secretory SEMA4C (sSEMA4C) were administered to rats by intraventricular injection. First, we found that elevated levels of sSEMA4C in the cerebrospinal fluid (CSF) of clinical patients were associated with poor prognosis. Both SEMA4C and sSEMA4C were increased in brain tissue around the hematoma after ICH in rats. Overexpression of SEMA4C attenuated neuronal apoptosis, neurosis, and neurologic impairment after ICH. However, treatment with rSEMA4C or sSEMA4C overexpression exacerbated neuronal injury. In addition, when treated with SEMA4C overexpression, the forward mode downstream protein RhoA and the reverse mode downstream ID1/3 transcriptional factors of SEMA4C/Plexin B2 signaling were all activated. Nevertheless, when exposed to rSEMA4C or sSEMA4C overexpression, only the forward mode was activated. Thus, sSEMA4C may be a novel molecular biomarker to predict the prognosis of patients with ICH, and the prevention of SEMA4C cleavage is expected to be a promising therapeutic target.

Keywords: Apoptosis; Intracerebral hemorrhage; Neuronal injury; Plexin B2; Semaphorin 4 C.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cerebral Hemorrhage* / diagnosis
  • Male
  • Neuroprotective Agents*
  • Rats
  • Rats, Sprague-Dawley
  • Semaphorins* / metabolism

Substances

  • Neuroprotective Agents
  • plexin
  • Semaphorins