Nsp3-N interactions are critical for SARS-CoV-2 fitness and virulence

Proc Natl Acad Sci U S A. 2023 Aug;120(31):e2305674120. doi: 10.1073/pnas.2305674120. Epub 2023 Jul 24.

Abstract

SARS-CoV-2, the causative agent of COVID-19 encodes at least 16 nonstructural proteins of variably understood function. Nsp3, the largest nonstructural protein contains several domains, including a SARS-unique domain (SUD), which occurs only in Sarbecovirus. The SUD has a role in preferentially enhancing viral translation. During isolation of mouse-adapted SARS-CoV-2, we isolated an attenuated virus that contained a single mutation in a linker region of nsp3 (nsp3-S676T). The S676T mutation decreased virus replication in cultured cells and primary human cells and in mice. Nsp3-S676T alleviated the SUD translational enhancing ability by decreasing the interaction between two translation factors, Paip1 and PABP1. We also identified a compensatory mutation in the nucleocapsid (N) protein (N-S194L) that restored the virulent phenotype, without directly binding to SUD. Together, these results reveal an aspect of nsp3-N interactions, which impact both SARS-CoV-2 replication and, consequently, pathogenesis.

Keywords: N protein; SARS-CoV-2; SARS-unique domain; nsp3.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • COVID-19*
  • Humans
  • Mice
  • Mutation
  • SARS-CoV-2
  • Severe acute respiratory syndrome-related coronavirus*
  • Virulence