Problem: In the cell column of anchoring villi, the cytotrophoblast differentiates into extravillous trophoblast (EVT) and invades the endometrium in contact with maternal immune cells. Recently, chemokines were proposed to regulate the decidual immune response. To investigate the roles of chemokines around the anchoring villi, we examined the expression profiles of chemokines in the first-trimester trophoblast-derived Swan71 cells using a three-dimensional culture model.
Method of study: The gene expressions in the spheroid-formed Swan71 cells were examined by microarray and qPCR analyses. The protein expressions were examined by immunochemical staining. The chemoattractant effects of spheroid-formed Swan71 cells were examined by migration assay using monocyte-derived THP-1 cells.
Results: The expressions of an EVT marker, laeverin, and matrix metalloproteases, MMP2 and MMP9, were increased in the spheroid-cultured Swan71 cells. Microarray and qPCR analysis revealed that mRNA expressions of various chemokines, CCL2, CCL7, CCL20, CXCL1, CXCL2, CXCL5, CXCL6, CXCL8, and CXCL10, in the spheroid-cultured Swan71 cells were up-regulated as compared with those in the monolayer-cultured Swan71 cells. These expressions were significantly suppressed by hypoxia. Migration assay showed that culture media derived from the spheroid-formed Swan71 cells promoted THP-1 cell migration.
Conclusion: This study indicated that chemokine expressions in Swan71 cells increase under a spheroid-forming culture and the culture media have chemoattractant effects. Since three-dimensional cell assembling in the spheroid resembles the structure of the cell column, this study also suggests that chemokines play important roles in the interaction between EVT and immune cells in their early differentiation stage.
Keywords: Swan 71; chemokines; extravillous trophoblast; spheroid.
© 2023 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.