Background: Wastewater monitoring is increasingly used for community surveillance of infectious diseases, especially after the COVID-19 pandemic as the genomic footprints of pathogens shed by infected individuals can be traced in the environment. However, detection and concentration of pathogens in the environmental samples and their efficacy in predicting infectious diseases can be influenced by meteorological conditions and quality of samples.
Objectives: This research examines whether meteorological conditions and sample pH affect SARS-CoV-2 concentrations in wastewater samples, and whether the association of SARS-CoV-2 with COVID-19 cases and mortality improves when adjusted for meteorological conditions and sample pH value in Miami-Dade County, FL.
Methods: Daily wastewater samples were collected from Miami-Dade Wastewater Treatment Plant in Key Biscayne, Florida from August 2021 to August 2022. The samples were analyzed for pH and spiked with OC43. RNA was extracted from the concentrated wastewater sample and SARS-CoV-2 was quantified using qPCR. COVID-19 and mortality data were acquired from the Centers for Disease Control and Prevention (CDC) and meteorological data from the National Climatic Data Center. COVID-19 case and mortality rates were modelled with respect to time-lagged wastewater SARS-CoV-2 adjusting for meteorological conditions, and sample pH value and OC43 recovery.
Results: Temperature, dew point, pH values and OC43 recovery showed significant associations with wastewater SARS-CoV-2. Time-lagged wastewater SARS-CoV-2 showed significant associations with COVID-19 case and mortality incidence rates. This association improved when wastewater SARS-CoV-2 levels were adjusted for (or instrumented on) meteorological conditions, OC43 recovery, and sample pH. A 0.47% change in COVID-19 case incidence rate was associated with 1% change in wastewater SARS-CoV-2 (β ~ 0.47; 95% CI = 0.29 - 0.64; p < 0.001). A 0.12 % change in COVID-19 mortality rate was associated with 1 % change in SARS-CoV-2 in wastewater 44 days prior. A 0.07% decline in COVID-19 mortality rate was associated with a unit increase in ambient temperature 28 days prior.
Discussion: Time lagged wastewater SARS-CoV-2 (and its adjustment for sample pH and RNA recovery) and meteorological conditions can be used for the surveillance of COVID-19 case and mortality. These findings can be extrapolated to improve the surveillance of other infectious diseases by proactive measurements of infectious agent(s) in the wastewater samples, adjusting for meteorological conditions and sample pH value.