Bulk and Surface Contributions to Ionisation Potentials of Metal Oxides

Angew Chem Int Ed Engl. 2023 Oct 2;62(40):e202308411. doi: 10.1002/anie.202308411. Epub 2023 Aug 24.

Abstract

Determining the absolute band edge positions in solid materials is crucial for optimising their performance in wide-ranging applications including photocatalysis and electronic devices. However, obtaining absolute energies is challenging, as seen in CeO2 , where experimental measurements show substantial discrepancies in the ionisation potential (IP). Here, we have combined several theoretical approaches, from classical electrostatics to quantum mechanics, to elucidate the bulk and surface contributions to the IP of metal oxides. We have determined a theoretical bulk contribution to the IP of stoichiometric CeO2 of only 5.38 eV, while surface orientation results in intrinsic IP variations ranging from 4.2 eV to 8.2 eV. Highly tuneable IPs were also found in TiO2 , ZrO2 , and HfO2 , in which surface polarisation plays a pivotal role in long-range energy level shifting. Our analysis, in addition to rationalising the observed range of experimental results, provides a firm basis for future interpretations of experimental and computational studies of oxide band structures.

Keywords: Ceria; Ionization Potential; Metal Oxides; QM/MM; Surface Chemistry.