Heatstroke (HS) is a life-threatening injury requiring neurocritical care which could lead to central nervous system dysfunction and severe multiple organ failure syndrome. The cell-cell adhesion and cell permeability are two key factors for characterizing HS. To investigate the process of HS, a biochip-based electrical model was proposed and applied to HS. During the process, the value of TEER is associated with cell permeability and CI which represents cell-cell adhesion decreases that are consistent with the reduction in cell-cell adhesion and cell permeability characterized by proteins (occludin, VE-Cadherin and ZO-1) and RNA level. The results imply that the model can be used to monitor the biological process and other biomedical applications.
Keywords: biochip; heatstroke; impedance.