HIV incidence in Kazakhstan increased by 73% between 2010 and 2020, with an estimated 35,000 people living with HIV (PLHIV) in 2020. The development of antiretroviral drug resistance is a major threat to effective antiretroviral therapy (ART), yet studies on the prevalence of drug resistance in Kazakhstan are sparse. In this study on the molecular epidemiology of HIV in Kazakhstan, we analyzed 968 partial HIV-1 pol sequences that were collected between 2017 and 2020 from PLHIV across all regions of Kazakhstan, covering almost 3% of PLHIV in 2020. Sequences predominantly represented subtypes A6 (57%) and CRF02_AG (41%), with 32% of sequences exhibiting high-level drug resistance. We further identified distinct drug-resistant mutations (DRMs) in the two subtypes: subtype A6 showed a propensity for DRMs A62V, G190S, K101E, and D67N, while CRF02_AG showed a propensity for K103N and V179E. Codon usage analysis revealed that different mutational pathways for the two subtypes may explain the difference in G190S and V179E frequencies. Phylogenetic analysis highlighted differences in the timing and geographic spread of both subtypes within the country, with A62V-harboring subtype A6 sequences clustering on the phylogeny, indicative of sustained transmission of the mutation. Our findings suggest an HIV epidemic characterized by high levels of drug resistance and differential DRM frequencies between subtypes. This emphasizes the importance of drug resistance monitoring within Kazakhstan, together with DRM and subtype screening at diagnosis, to tailor drug regimens and provide effective, virally suppressive ART.
Keywords: A6; CRF02_AG; Central Asia; DRMs; HIV; Kazakhstan; antiretroviral drug resistance; molecular epidemiology; phylogenetics.