Unexpected Performance in Developing Birds

Integr Comp Biol. 2023 Sep 15;63(3):772-784. doi: 10.1093/icb/icad064.

Abstract

Birds are well known for their ability to fly, and flight-capable adult birds have many anatomical specializations for meeting the demands of aerial locomotion. Juvenile birds in altricial species typically acquire these specializations close to fledging and leave the nest with some flight capability. In contrast, juveniles in most precocial species begin navigating their environment with rudimentary anatomies and may not develop full-sized wings or musculoskeletal apparatuses for several months. This manuscript explores how juvenile birds achieve high levels of locomotor performance in the absence of flight specializations, by synthesizing work on two groups of precocial birds with very different developmental strategies. Galliforms like the Chukar Partridge (Alectoris chukar) have early wing development and are capable of flight within weeks. Compared with adults, juvenile chukars have less aerodynamically effective feathers and smaller muscles but compensate through anatomical, kinematic, and behavioral mechanisms. In contrast, waterfowl have delayed wing development and initially rely on leg-based locomotion. In Mallards (Anas platyrhynchos) and their domesticated derivatives, leg investment and performance peak early in ontogeny, but then decline when wings develop. Chukar and mallard juveniles thus rely on different mechanisms for negotiating their surroundings in the absence of flight specializations. In conjunction with work in other animals, these patterns indicate that juveniles with developing locomotor apparatuses can achieve surprisingly high levels of locomotor performance through a variety of compensatory mechanisms.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Feathers
  • Flight, Animal* / physiology
  • Galliformes* / physiology
  • Locomotion
  • Wings, Animal