Objectives: This study aims to compare the surgical efficiency (preparation and operation time) and accuracy of implant placement between robots with different human-robot interactions.
Methods: The implant robots were divided into three groups: semi-active robot (SR), active robot (AR) and passive robot (PR). Each robot placed two implants (#31 and #36) on a phantom, practising 10 times. The surgical efficiency and accuracy of implant placement were then evaluated.
Results: Sixty implants were placed in 30 phantoms. The mean preparation times for the AR, PR and SR groups were 3.85 ± 0.17 min, 2.14 ± 0.06 mins and 1.65 ± 0.19 mins, respectively. The mean operation time of the PR group (3.76 ± 0.59 min) was shorter that of than the AR (4.89 ± 0.70 mins) and SR (4.59 ± 0.56 min) groups (all P < 0.001). The operation time of the AR group in the anterior region (4.47 ± 0.31 min) was longer than that of the SR group (4.07 ± 0.10 min) (P = 0.007). The mean coronal, apical and axial deviations of the PR group (0.40 ± 0.12 mm, 0.49 ± 0.13 mm, 0.96 ± 0.22°) were higher than those of the AR (0.23 ± 0.11 mm, 0.24 ± 0.11 mm, 0.54 ± 0.20 °) (all P < 0.001) and SR (0.31 ± 0.10 mm, 0.36 ± 0.12 mm, 0.43 ± 0.14 °) groups (P = 0.044, P = 0.002, and P < 0.001, respectively).
Conclusions: Human-robot interactions affect the efficiency of implant surgery. Active and semi-active robots show comparable implant accuracy. However, the implants placed by the passive robot show higher deviations.
Clinical significance: This in vitro study preliminarily demonstrates that implant placement is accurate when using implant robots with different human-robot interactions. However, different human-robot interactions have variable surgical efficiencies.
Keywords: Accuracy; Dental implant; Implant robots; Operation time; Preparation time; Robot-assisted surgery.
Copyright © 2023. Published by Elsevier Ltd.