SPECT/CT imaging for tracking subendothelial retention of electronegative low-density lipoprotein in vivo

Int J Biol Macromol. 2023 Oct 1:250:126069. doi: 10.1016/j.ijbiomac.2023.126069. Epub 2023 Aug 2.

Abstract

The fifth subfraction of low-density lipoprotein (L5 LDL) can be separated from human LDL using fast-protein liquid chromatography with an anion exchange column. L5 LDL induces vascular endothelial injury both in vitro and in vivo through the lectin-like oxidized LDL receptor-1 (LOX-1). However, no in vivo evidence shows the tendency of L5 LDL deposition on vascular endothelium and links to dysfunction. This study aimed to investigate L5 LDL retention in vivo using SPECT/CT imaging, with Iodine-131 (131I)-labeled and injected into six-month-old apolipoprotein E knockout (apoE-/-) mice through tail veins. Besides, we examined the biodistribution of L5 LDL in tissues and analyzed the intracellular trafficking in human aortic endothelial cells (HAoECs) by confocal microscopy. The impacts of L5 LDL on HAoECs were analyzed using electron microscopy for mitochondrial morphology and western blotting for signaling. Results showed 131I-labeled-L5 was preferentially deposited in the heart and vessels compared to L1 LDL. Furthermore, L5 LDL was co-localized with the mitochondria and associated with mitofusin (MFN1/2) and optic atrophy protein 1 (OPA1) downregulation, leading to mitochondrial fission. In summary, L5 LDL exhibits a propensity for subendothelial retention, thereby promoting endothelial dysfunction and the formation of atherosclerotic lesions.

Keywords: Detection of L5 LDL retention in vivo; Electronegative low-density lipoprotein (L5 LDL); Endothelial dysfunction; Formation of atherosclerotic lesions; Propensity for subendothelial retention.