Direct partial oxidation of methane to liquid oxygenates has been regarded as a potential route to valorize methane. However, CH4 activation usually requires a high temperature and pressure, which lowers the feasibility of the reaction. Here, we propose an electro-assisted approach for the partial oxidation of methane, using in-situ cathodically generated reactive oxygen species, at ambient temperature and pressure. Upon using acid-treated carbon as the electrocatalyst, the electro-assisted system enables the partial oxidation of methane in an acidic electrolyte to produce oxygenated liquid products. We also demonstrate a high production rate of oxygenates (18.9 μmol h-1) with selective HCOOH production. Mechanistic analysis reveals that reactive oxygen species such as ∙OH and ∙OOH radicals are produced and activate CH4 and CH3OH. In addition, unstable CH3OOH generated from methane partial oxidation can be additionally reduced to CH3OH on the cathode, and so-produced CH3OH is further oxidized to HCOOH, allowing selective methane partial oxidation.
© 2023. Springer Nature Limited.