Non-SMC condensin II complex subunit G2 (NCAPG2) is one of the three non-SMC subunits in condensin II, which plays a vital role in regulating chromosome condensation and segregation. Although the tumor-promoting role of NCAPG2 has been reported in several solid malignancies, its function in breast invasive carcinoma (BRCA) remains unknown. Data both from GEPIA and GSE36295 indicated that NCAPG2 mRNA expression was abnormally upregulated in cancer tissues, which was further verified in 40 paired BRCA and para-carcinoma samples. Kaplan-Meier Plotter further illustrated that BRCA patients with higher NCAPG2 expression have a poorer prognosis. Functional experiments carried out in two BRCA cell lines (MCF-7 and T-47D) showed that NCAPG2-silenced BRCA cells acquired less aggressive behavior - weakened growth and metastasis both in vitro and in vivo. Label-free proteomics quantified the protein expression patterns in MCF-7 cells, and the results revealed 684 differentially expressed proteins (|log2FC| > 1 and P < 0.05) downstream to NCAPG2. Interestingly, poly(C)-binding protein 2 (PCBP2), an RNA binding protein previously known to increase RNA stability of its target genes, was found to directly bind to and protect NCAPG2 mRNA from degradation-PCBP2 knockdown accelerated the degradation half-life time of NCAPG2 mRNA from approximately 8 h to 5 h. Taken together, our study indicates that NCAPG2 acts as a novel contributor to BRCA growth and metastasis under the regulation of PCBP2, providing insights into BRCA treatment.
Keywords: Breast invasive carcinoma; Non-SMC condensin II complex; PCBP2; Proteomics; mRNA stability.
Copyright © 2023. Published by Elsevier Inc.