Integration of genome-wide association studies reveal loci associated with salt tolerance score of rice at the seedling stage

J Appl Genet. 2023 Dec;64(4):603-614. doi: 10.1007/s13353-023-00775-7. Epub 2023 Aug 9.

Abstract

Salt threatens rice cultivation in many countries. Hence, breeding new varieties with high salt tolerance is important.A panel of 2,391 rice accessions from the 3 K Rice Genome Project was selected to evaluate salt tolerance via the standard evaluation score (SES) in hydroponics under 60 mM NaCl at the seedling stage. Three sub-population panels including 1,332, 628, and 386 accessions from the original 2,391 ones were constructed based on low relatedness revealed by a phylogenetic tree generated by Archaeopteryx Tree. A genome-wide association study (GWAS) was conducted on the entire and sub-population panels using SES data and a selection of 5, 10, 20, and 40% of SNPs selected from the original 1,011,601 SNPs by filtering minor allele frequency > 5% and missing rate < 5%. To perform GWAS, three methods implemented in three different software packages were utilized.Using the integration of GWAS programs, a total of four QTLs associated with SES scores were identified in different panels. Some QTLs co-located with previously detected QTL-related traits. qSES1.1 was detected in three panels, qSES1.3 and qSES2.1 in two panels, and qSES3.1 in one panel through GWAS by all three methods used and selected SNPs. These four QTLs were selected to detect candidate genes. Combining gene-based association study plus haplotype analysis in the entire population and the three sub-populations let us shortlist three candidate genes, viz. LOC_Os01g23640 and LOC_Os01g23680 for qSES1.1, and LOC_Os01g71240 for qSES1.3 region affecting salt tolerance. The identified QTLs and candidate genes provided useful materials and genetic information for future functional characterization and genetic improvement of salt tolerance in rice.

Keywords: 3K Rice Genome Project; GWAS; QTL; Rice; Salt.

MeSH terms

  • Genome-Wide Association Study / methods
  • Oryza* / genetics
  • Phylogeny
  • Plant Breeding
  • Salt Tolerance / genetics
  • Seedlings* / genetics